Repository GitHub logo

Resources

Note that some files can not be published due to copyright restrictions. This applies for example to the master thesis or the tables that were used to check the accuracy of the IR and NIR detection approaches.

Poster

In case the poster is not displayed properly (this could happen e.g. on some smartphones), you can access the file here.

Scripts

Purpose  
Transform token level data to review level File
Get review metadata File
Add incentivization status and review type to all reviews in all genres File
Create tables with 5 reviews per genre with potential disclosure terms File
Create an overview table with (non-)incentivized reviews per genre File
Create table with 5 reviews per genre with purchase intention File
Create table with 5 reviews per genre with incentivization status = 0 File
Add additional column to romance reviews, indicating review language File
Create the two sub-corpora of IRs and NIRs File
Preprocess data File
Analyze H1: Positivity File
Analyze H2: Complexity File
Analyze H3: Elaborateness File
Analyze H4: Extremeness File
Analyze H5: Objectivity File
Test hypotheses H1-H3 and H5 File
Test hypothesis H4 File
Merge IR and NIR file for H4 File
Create table with descriptive statistics for all analyses File
Generate plots to visualize results File


Generated Data

Purpose  
Overview over shares of incentivized reviews per genre File
Comparison of incentivization shares with Hu et al. 2023 File
Summary of the accuracy of potential terms to detect incentivized reviews File
Overview over the descriptive statistics for the five analyses File


Plots

Content  
Total number of reviews per Genre in the LoBo Corpus File
Share of incentivized reviews per genre File
Comparison of shares of incentivized reviews for different genres and sources File
Absolute numbers of incentivized reviews per genre File
Share of the review types in the romance genre File
Distribution plot for H1 File
Distribution plot for H2 File
Distribution plot for H3 File
Distribution plot for H4 File
Distribution plot for H5 File


Bibliography

Börsenverein d. Deutschen Buchhandels, Abt. Marktforsch. u. Statistik (Ed.). (2024). Buch und Buchhandel in Zahlen 2024: Zahlen, Fakten und Analysen zur wirtschaftlichen Entwicklung. MVB.

Costa, A., Guerreiro, J., Moro, S., & Henriques, R. (2019). Unfolding the characteristics of incentivized online reviews. Journal of Retailing and Consumer Services, 47, 272–281. DOI.

Friestad, M., & Wright, P. (1994). The Persuasion Knowledge Model: How People Cope with Persuasion Attempts. Journal of Consumer Research, 21(1), 1–31. DOI.

Gouldner, A. W. (1960). The Norm of Reciprocity: A Preliminary Statement. American Sociological Review, 25(2), 161. DOI.

Heider, F. (1958). The psychology of interpersonal relations (pp. ix, 326). John Wiley & Sons Inc. DOI.

Hu, Y., LeBlanc, Z., Diesner, J., Underwood, T., Layne-Worthey, G., & Downie, J. S. (2023). Complexities of leveraging user-generated book reviews for scholarly research: Transiency, power dynamics, and cultural dependency. International Journal on Digital Libraries. DOI.

Incentivization. (2024). Collins Dictionary. Harper Collins. URL.

Kim, S. J., Maslowska, E., & Tamaddoni, A. (2019). The paradox of (dis)trust in sponsorship disclosure: The characteristics and effects of sponsored online consumer reviews. Decision Support Systems, 116, 114–124. DOI.

Landesmedienanstalten. (2019, January 23). Leitfaden der Medienanstalten – Werbekennzeichnung bei Online-Medien 2018. die medienanstalten – ALM GbR. URL.

Lauer, G. (2020). Lesen im digitalen Zeitalter. wbg Academic.

Li, Y., & Zhang, L. (2021). Do online reviews truly matter? A study of the characteristics of consumers involved in different online review scenarios. Behaviour & Information Technology, 40(13), 1448–1466. DOI.

LovelyBooks. (2024, January). Mediadaten für Verlage. URL.

Pleimling, D. (2012, February 10). Social Reading—Leben im digitalen Zeitalter. Aus Politik und Zeitgeschichte. URL.

Rebora, S., Messerli, T., & Herrmann, J. B. (2022, March 7). Towards a Computational Study of German Book Reviews—A Comparison between Emotion Dictionaries and Transfer Learning in Sentiment Analysis. DHd2022: Kulturen des digitalen Gedächtnisses. DOI.

Stein, S. (2015). Laienliteraturkritik—Charakteristika und Funktionen von Laienrezensionen im Literaturbetrieb. In H. Kaulen & C. Gansel (Eds.), Literaturkritik heute: Tendenzen—Traditionen—Vermittlung (pp. 59–76). V&R unipress.